REPORT
書籍「データマイニング手法」発売
弊社代表の上野とデータアナリストの小川も翻訳に参加した「データマイニング手法【3訂版】」の2冊が発売になります。
Amazon.co.jpの詳細はこちら。
■データマイニング手法【3訂版】〈予測・スコアリング編〉
■データマイニング手法【3訂版】〈探索的知識発見編〉
概要
ビッグデータの時代となった。これまでの業務トランザクションデータに加えて、センシングやGPSなどM2M(マシンtoマシン)データ、SNSやweb上のソーシャルデータなど、どの組織においてもデータの増大とそれへの対処が喫緊の課題となっている。本書は、この領域でのデータ利活用についての著名なコンサルタントであり20年近く前からデータマイニングを実践している著者による、数式なしでの事例と図解による、ユーザのためのきわめて優れた手法紹介・解説である。本書では、最新の手法と応用事例によってほぼ全面的に改訂された『Data Mining Techniques(Third Edition)』からデータマイニング手法に関する章のみを翻訳している。
データマイニングは、ビジネス課題解決のために行われる。したがってデータの選択やデータクリーニングから変数変換、手法選択、報告まで、その目的に照らして適切に行われなければならない。原著のChapter 1を開いただけでも、適切なデータ量、履歴期間、変数選択、データ抽出方法、欠損値の扱いなどについて、ビジネス課題のためのモデル構築の視点から具体的に触れていることがわかる。データサイエンティストは、まずビジネスサイエンティストでもなければならないのである。たとえば、判別問題の要因となる変数を探すときに、平均値の周辺を除いて両端のデータだけを使ったCARTから変数選択する、というような実務から生まれたたくさんのノウハウと手法に満ちているのが本書である。
データマイニングにはビジネス上の目的がある。購買金額、顧客維持、解約行動、類似顧客からのリコメンデーションなどビジネス上の成果変数が明らかであり、それを向上させるためにモデルを利用することについては〈予測・スコアリング編〉で扱っている。ビッグデータから顧客をセグメント分けして、より効率的・効果的なCRMを行いたいというような課題については、〈探索的知識発見編〉で扱っている自動クラスタリングやバスケット分析、リンク分析、テキストマイニングなどが役立つであろう。
このようにデータマイニング実務経験から生み出された本書は、実務の関係者にとって貴重なものであることが第一の特徴である。第二に、事例のポイントを的確に伝えるために翻訳者もすべてデータマイニング実務経験のある者としたことも特徴かもしれない。第三に、この数年で普及してきたサポートベクターマシン、協調フィルタリング、生存時間分析、テキストマイニング、ナイーブベイズなどの新たな手法についても触れられている点があげられる。
著者は最も経験のあるデータマイニングコンサルタントである。本書を手に取ることによってそのコンサルティング経験を追体験することからあなたのデータマイニングをスタートしてほしい。ビッグデータではほとんどの差異は統計的に有意となるので、データの海に溺れないためには本書のような確かな指針が必要と思われる。そして、データサイエンスを学ぶ学生にも、実務視点で学習分野を見直す機会となる良い参考書となると思われる。(「訳者まえがき」より)
前回に引き続き、上野が翻訳を担当させていただきました。
今回からは小川も翻訳を担当しております。
応用事例が豊富に載っている本書、是非お手に取ってご覧下さい!
この記事をシェアする